3.285 \(\int \frac {x \sinh ^{-1}(a x)^2}{\sqrt {1+a^2 x^2}} \, dx\)

Optimal. Leaf size=52 \[ \frac {2 \sqrt {a^2 x^2+1}}{a^2}+\frac {\sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^2}{a^2}-\frac {2 x \sinh ^{-1}(a x)}{a} \]

[Out]

-2*x*arcsinh(a*x)/a+2*(a^2*x^2+1)^(1/2)/a^2+arcsinh(a*x)^2*(a^2*x^2+1)^(1/2)/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5717, 5653, 261} \[ \frac {2 \sqrt {a^2 x^2+1}}{a^2}+\frac {\sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^2}{a^2}-\frac {2 x \sinh ^{-1}(a x)}{a} \]

Antiderivative was successfully verified.

[In]

Int[(x*ArcSinh[a*x]^2)/Sqrt[1 + a^2*x^2],x]

[Out]

(2*Sqrt[1 + a^2*x^2])/a^2 - (2*x*ArcSinh[a*x])/a + (Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^2)/a^2

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \sinh ^{-1}(a x)^2}{\sqrt {1+a^2 x^2}} \, dx &=\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2}-\frac {2 \int \sinh ^{-1}(a x) \, dx}{a}\\ &=-\frac {2 x \sinh ^{-1}(a x)}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2}+2 \int \frac {x}{\sqrt {1+a^2 x^2}} \, dx\\ &=\frac {2 \sqrt {1+a^2 x^2}}{a^2}-\frac {2 x \sinh ^{-1}(a x)}{a}+\frac {\sqrt {1+a^2 x^2} \sinh ^{-1}(a x)^2}{a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 48, normalized size = 0.92 \[ \frac {2 \sqrt {a^2 x^2+1}+\sqrt {a^2 x^2+1} \sinh ^{-1}(a x)^2-2 a x \sinh ^{-1}(a x)}{a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcSinh[a*x]^2)/Sqrt[1 + a^2*x^2],x]

[Out]

(2*Sqrt[1 + a^2*x^2] - 2*a*x*ArcSinh[a*x] + Sqrt[1 + a^2*x^2]*ArcSinh[a*x]^2)/a^2

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 70, normalized size = 1.35 \[ -\frac {2 \, a x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2} - 2 \, \sqrt {a^{2} x^{2} + 1}}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-(2*a*x*log(a*x + sqrt(a^2*x^2 + 1)) - sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^2 - 2*sqrt(a^2*x^2 + 1))
/a^2

________________________________________________________________________________________

giac [A]  time = 0.38, size = 74, normalized size = 1.42 \[ \frac {\sqrt {a^{2} x^{2} + 1} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2}}{a^{2}} - \frac {2 \, {\left (x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \frac {\sqrt {a^{2} x^{2} + 1}}{a}\right )}}{a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

sqrt(a^2*x^2 + 1)*log(a*x + sqrt(a^2*x^2 + 1))^2/a^2 - 2*(x*log(a*x + sqrt(a^2*x^2 + 1)) - sqrt(a^2*x^2 + 1)/a
)/a

________________________________________________________________________________________

maple [A]  time = 0.08, size = 64, normalized size = 1.23 \[ \frac {\arcsinh \left (a x \right )^{2} a^{2} x^{2}+\arcsinh \left (a x \right )^{2}-2 \arcsinh \left (a x \right ) \sqrt {a^{2} x^{2}+1}\, a x +2 a^{2} x^{2}+2}{a^{2} \sqrt {a^{2} x^{2}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x)

[Out]

1/a^2/(a^2*x^2+1)^(1/2)*(arcsinh(a*x)^2*a^2*x^2+arcsinh(a*x)^2-2*arcsinh(a*x)*(a^2*x^2+1)^(1/2)*a*x+2*a^2*x^2+
2)

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 48, normalized size = 0.92 \[ \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {arsinh}\left (a x\right )^{2}}{a^{2}} - \frac {2 \, {\left (a x \operatorname {arsinh}\left (a x\right ) - \sqrt {a^{2} x^{2} + 1}\right )}}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arcsinh(a*x)^2/(a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

sqrt(a^2*x^2 + 1)*arcsinh(a*x)^2/a^2 - 2*(a*x*arcsinh(a*x) - sqrt(a^2*x^2 + 1))/a^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x\,{\mathrm {asinh}\left (a\,x\right )}^2}{\sqrt {a^2\,x^2+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*asinh(a*x)^2)/(a^2*x^2 + 1)^(1/2),x)

[Out]

int((x*asinh(a*x)^2)/(a^2*x^2 + 1)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 0.72, size = 49, normalized size = 0.94 \[ \begin {cases} - \frac {2 x \operatorname {asinh}{\left (a x \right )}}{a} + \frac {\sqrt {a^{2} x^{2} + 1} \operatorname {asinh}^{2}{\left (a x \right )}}{a^{2}} + \frac {2 \sqrt {a^{2} x^{2} + 1}}{a^{2}} & \text {for}\: a \neq 0 \\0 & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*asinh(a*x)**2/(a**2*x**2+1)**(1/2),x)

[Out]

Piecewise((-2*x*asinh(a*x)/a + sqrt(a**2*x**2 + 1)*asinh(a*x)**2/a**2 + 2*sqrt(a**2*x**2 + 1)/a**2, Ne(a, 0)),
 (0, True))

________________________________________________________________________________________